|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "toc": "true"
- },
- "source": [
- "# Table of Contents\n",
- " <p><div class=\"lev1 toc-item\"><a href=\"#Pandas\" data-toc-modified-id=\"Pandas-1\"><span class=\"toc-item-num\">1 </span>Pandas</a></div><div class=\"lev2 toc-item\"><a href=\"#Why-Pandas?\" data-toc-modified-id=\"Why-Pandas?-11\"><span class=\"toc-item-num\">1.1 </span>Why Pandas?</a></div><div class=\"lev2 toc-item\"><a href=\"#How-Pandas?\" data-toc-modified-id=\"How-Pandas?-12\"><span class=\"toc-item-num\">1.2 </span>How Pandas?</a></div>"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "** NAVIGATION **\n",
- "\n",
- "**Got Pandas? _Practical Data Wrangling with Pandas_**\n",
- "\n",
- "* **Introduction**\n",
- "1. [Data Structures](./1_data_structures.ipynb)\n",
- "2. [Importing Data](./2_importing_data.ipynb)\n",
- "3. [Manipulating DataFrames](./3_dataframe_operations.ipynb)\n",
- "4. [Wrap Up](./4_wrapping_up.ipynb)\n",
- "\n",
- "---"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**NOTEBOOK OBJECTIVES**\n",
- "\n",
- "In this notebook we'll:\n",
- "\n",
- "* explore the purpose of Pandas,\n",
- "* understand where Pandas fits in the scientific data analysis ecosystem,\n",
- "* understand installation options."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Pandas\n",
- "\n",
- "Pandas is a fantastic library, and if you don't _Got Pandas?_ ... perhaps it is time you do.\n",
- "\n",
- "Pandas is a fast and built on top of [NumPy](http://www.numpy.org/) with dependencies on [statsmodel](http://www.statsmodels.org/stable/index.html), so if you have familiarity with NumPy, Pandas might be what you've always wanted and never knew you did!\n",
- "\n",
- "For readers who are familiar with R and considering Python, Pandas may be the right tool to make the transition smoothly as the core DataFrame structure in Pandas is modeled after that of R's `data.frame`.\n",
- "\n",
- "\n",
- "Pandas has many strengths but here are a few that might pique your interests:\n",
- "\n",
- "* flexible, consistent data import and export from a wide array of sources, including SQL, CSV, EXCEL, etc.\n",
- "* tabular / matrix data representation with heterogeneous labeled or unlabeled columns\n",
- "* intuitive handling of missing data \n",
- "* import and conversion of data to / from NumPy\n",
- "* sophisticated slicing, indexing and subsetting of data\n",
- "* support for hierarchical labeling of data\n",
- "* support for time series data, including time/date conversion, moving windows, etc.\n",
- "* and much more ...\n",
- "\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "```\n",
- "picture\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Why Pandas?\n",
- "\n",
- "Pandas has become known as the go-to library in the Python data science stack. With its strong support for importing various data formats, it can be the _first tool_ you might use to work with, manipulate, convert, reorganize and prepare data for analysis.\n",
- "\n",
- "Pandas is not a replacement for NumPy, but rather a supplement to it. With its sophisticated indexing, it becomes a more powerful way to access and prepare data for analysis in NumPy, and in many cases it will become a necessary compliment to the features already provided by NumPy.\n",
- "\n",
- "Pandas brings the fun back into data engineering, and once mastered is one of many tools that will be required for doing high quality data analysis in Python.\n",
- "\n",
- "Everything you'd every want to know about Python can be found :\n",
- "\n",
- "* [pandas.pydata.org](http://pandas.pydata.org): go here for complete, up-to-date documentation on the latest and greatest of Pandas\n",
- "* [github.com/pandas-dev/pandas](http://github.com/pandas-dev/pandas): if you want to browse source code for the project\n",
- "\n",
- "There are also many great tutorials around the web and in the blogosphere."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## How Pandas?\n",
- "\n",
- "Pandas can be installed in Python 2 and Python 3, though it is recommended to use Python 3 as Python 2 will soon lose support and updates.\n",
- "\n",
- "Pandas can be installed from a variety of mechanisms.\n",
- "\n",
- "If you've installed [Anaconda](https://www.continuum.io/what-is-anaconda) then you need do nothing -- Pandas is installed by default in the conda stack.\n",
- "\n",
- "If you want, you can install Pandas via [binaries from Pypi](http://pypi.python.org/pypi/pandas) or you can install via `pip`:\n",
- "\n",
- "```bash\n",
- "pip install pandas\n",
- "```\n",
- "\n",
- "should get you going.\n",
- "\n",
- "For more about installation, please see:\n",
- "\n",
- "* [complete Pandas installation documentation on pydata.org](http://pandas.pydata.org/pandas-docs/stable/install.html)\n",
- "Ξ"
- ]
- }
- ],
- "metadata": {
- "anaconda-cloud": {},
- "kernelspec": {
- "display_name": "Python [conda root]",
- "language": "python",
- "name": "conda-root-py"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.1"
- },
- "toc": {
- "colors": {
- "hover_highlight": "#DAA520",
- "navigate_num": "#000000",
- "navigate_text": "#333333",
- "running_highlight": "#FF0000",
- "selected_highlight": "#FFD700",
- "sidebar_border": "#EEEEEE",
- "wrapper_background": "#FFFFFF"
- },
- "moveMenuLeft": true,
- "nav_menu": {
- "height": "67px",
- "width": "251px"
- },
- "navigate_menu": true,
- "number_sections": false,
- "sideBar": true,
- "threshold": 4,
- "toc_cell": true,
- "toc_section_display": "block",
- "toc_window_display": false,
- "widenNotebook": false
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|