Manipulating DataFrames

We will review our terminology for a quick moment:

  • index : the column and row indices of your Series or DataFrame, the index for each of these may be hiearchical
    • row index : the index along the horizontal dimension, and typically used as the primary index
    • column index : the index along the vertical dimension
  • axis : the numeric designation for the column or row indices; typically 0 is the column-axis and 1 is the row-axis. When dealing with multi-indices, the hierarchy within the axis are referred to as levels and accessed similarly

More Selecting

In the example for this section, we're going to go back to our Baseball data set and load the batting statistics into a DataFrame.

In [1]:
import pandas as pd

# get the data for players in 2015-16 who played in 100 or more games
df = pd.read_csv("./datasets/Batting.csv")

The convenient [] operator (again)

As before basic slice selections can be made with the syntax similar to that found in lists using the convenience of the [] operator. For example, obtaining the first 5 rows of our data, or the last 15.

We mostly worked on row slicing with the [] selector, but if we pass a column label or list of the columns we'd like, say the RBI and G (games played) data, we get mostly what we'd expect:

In [4]:
df["RBI"][:5]
Out[4]:
0     0.0
1    13.0
2    19.0
3    27.0
4    16.0
Name: RBI, dtype: float64
In [5]:
df[["RBI", "G"]][:10]
Out[5]:
RBI G
0 0.0 1
1 13.0 25
2 19.0 29
3 27.0 27
4 16.0 25
5 5.0 12
6 2.0 1
7 34.0 31
8 1.0 1
9 11.0 18

Boolean selecting

We have yet to make more complex selections beyond index values. Now we're ready to introduce selecting by boolean value. With this kinds of selection, we're going to as Pandas to give us the Series or DataFrame that represents the boolean values of what we want, then we will allow iloc to reduce the resulting Series or DataFrame to what we're looking for. Let's see this in action.

Say we want to find all items in our DataFrame where yearID is 2015 or

df.yearID == 2015

Let's first see what this does.

In [7]:
df.yearID == 2015
Out[7]:
0         False
1         False
2         False
3         False
4         False
5         False
6         False
7         False
8         False
9         False
10        False
11        False
12        False
13        False
14        False
15        False
16        False
17        False
18        False
19        False
20        False
21        False
22        False
23        False
24        False
25        False
26        False
27        False
28        False
29        False
          ...  
102786    False
102787    False
102788    False
102789    False
102790    False
102791    False
102792    False
102793    False
102794    False
102795    False
102796    False
102797    False
102798    False
102799    False
102800    False
102801    False
102802    False
102803    False
102804    False
102805    False
102806    False
102807    False
102808    False
102809    False
102810    False
102811    False
102812    False
102813    False
102814    False
102815    False
Name: yearID, Length: 102816, dtype: bool
In [8]:
df.loc[df.yearID == 2015][:10] # note we're restricting the return to just the first 10 values
Out[8]:
playerID yearID stint teamID lgID G AB R H 2B ... RBI SB CS BB SO IBB HBP SH SF GIDP
99847 aardsda01 2015 1 ATL NL 33 1 0 0 0 ... 0.0 0.0 0.0 0 1.0 0.0 0.0 0.0 0.0 0.0
99848 abadfe01 2015 1 OAK AL 62 0 0 0 0 ... 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0
99849 abreujo02 2015 1 CHA AL 154 613 88 178 34 ... 101.0 0.0 0.0 39 140.0 11.0 15.0 0.0 1.0 16.0
99850 achteaj01 2015 1 MIN AL 11 0 0 0 0 ... 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0
99851 ackledu01 2015 1 SEA AL 85 186 22 40 8 ... 19.0 2.0 2.0 14 38.0 0.0 1.0 3.0 3.0 3.0
99852 ackledu01 2015 2 NYA AL 23 52 6 15 3 ... 11.0 0.0 0.0 4 7.0 0.0 0.0 0.0 1.0 0.0
99853 adamecr01 2015 1 COL NL 26 53 4 13 1 ... 3.0 0.0 1.0 3 11.0 1.0 1.0 1.0 0.0 0.0
99854 adamsau01 2015 1 CLE AL 28 1 0 0 0 ... 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 1.0
99855 adamsma01 2015 1 SLN NL 60 175 14 42 9 ... 24.0 1.0 0.0 10 41.0 1.0 0.0 0.0 1.0 1.0
99856 adcocna01 2015 1 CIN NL 13 0 0 0 0 ... 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0

10 rows × 22 columns

Now what if we wanted the restrict this further by team. Say we wanted to see only the Minesota Twins player data for 2015. That is

df.yearID == 2015
AND
df.teamID == "MIN"

We simply put these in parethesis and use the & operator.

In [9]:
df.loc[(df.yearID == 2015) & (df.teamID == "MIN")].head(10)
Out[9]:
playerID yearID stint teamID lgID G AB R H 2B ... RBI SB CS BB SO IBB HBP SH SF GIDP
99850 achteaj01 2015 1 MIN AL 11 0 0 0 0 ... 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0
99891 arciaos01 2015 1 MIN AL 19 58 6 16 0 ... 8.0 0.0 0.0 4 15.0 4.0 2.0 0.0 1.0 2.0
99954 bernido01 2015 1 MIN AL 4 5 1 1 1 ... 2.0 0.0 0.0 1 3.0 0.0 0.0 0.0 0.0 0.0
99988 boyerbl01 2015 1 MIN AL 68 0 0 0 0 ... 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0
100030 buxtoby01 2015 1 MIN AL 46 129 16 27 7 ... 6.0 2.0 2.0 6 44.0 0.0 1.0 2.0 0.0 1.0
100139 cottsne01 2015 2 MIN AL 17 0 0 0 0 ... 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0
100215 doziebr01 2015 1 MIN AL 157 628 101 148 39 ... 77.0 12.0 4.0 61 148.0 2.0 7.0 0.0 8.0 10.0
100221 duensbr01 2015 1 MIN AL 55 1 0 0 0 ... 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0
100222 duffety01 2015 1 MIN AL 10 0 0 0 0 ... 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0
100249 escobed01 2015 1 MIN AL 127 409 48 107 31 ... 58.0 2.0 3.0 28 86.0 1.0 2.0 2.0 5.0 7.0

10 rows × 22 columns

Now what if we wanted to restrict a subset of columns. This is easy with iloc[] ... we will just use our boolean expression as above for the row selection and then the list of columns for our column selection (in this case a much smaller subset of data).

In [10]:
df.loc[(df.yearID == 2015) & (df.teamID == "MIN"),\
       ['playerID', 'G', 'AB', 'H', 'HR', 'RBI']]
Out[10]:
playerID G AB H HR RBI
99850 achteaj01 11 0 0 0 0.0
99891 arciaos01 19 58 16 2 8.0
99954 bernido01 4 5 1 0 2.0
99988 boyerbl01 68 0 0 0 0.0
100030 buxtoby01 46 129 27 2 6.0
100139 cottsne01 17 0 0 0 0.0
100215 doziebr01 157 628 148 28 77.0
100221 duensbr01 55 1 0 0 0.0
100222 duffety01 10 0 0 0 0.0
100249 escobed01 127 409 107 12 58.0
100270 fienca01 62 0 0 0 0.0
100302 fryerer01 15 22 5 0 2.0
100333 gibsoky01 32 5 1 0 0.0
100373 grahajr01 39 0 0 0 0.0
100455 herrmch01 45 103 15 2 10.0
100459 hicksaa01 97 352 90 11 33.0
100486 hugheph01 27 3 0 0 0.0
100488 hunteto01 139 521 125 22 81.0
100521 jepseke01 29 0 0 0 0.0
100564 keplema01 3 7 1 0 0.0
100696 mauerjo01 158 592 157 10 66.0
100701 maytr01 48 3 0 0 0.0
100729 meyeral01 2 0 0 0 0.0
100737 milonto01 24 2 0 0 0.0
100807 nolasri01 9 3 0 0 0.0
100816 nunezed02 72 188 53 4 20.0
100837 orourry01 28 0 0 0 0.0
100872 pelfrmi01 30 3 2 0 0.0
100895 perkigl01 60 0 0 0 0.0
100915 plouftr01 152 573 140 22 86.0
100917 polanjo01 4 10 3 0 1.0
100925 pressry01 27 0 0 0 0.0
100994 robinsh01 83 180 45 0 16.0
101023 rosared01 122 453 121 13 50.0
101067 sanomi01 80 279 75 18 52.0
101069 santada01 91 261 56 0 21.0
101072 santaer01 17 0 0 0 0.0
101079 schafjo02 27 69 15 0 5.0
101144 staufti01 13 0 0 0 0.0
101164 suzukku01 131 433 104 5 50.0
101189 thielca01 6 0 0 0 0.0
101193 thompaa01 41 0 0 0 0.0
101203 tonkimi01 26 0 0 0 0.0
101240 vargake01 58 175 42 5 17.0

Sorting

Sorting is facilitated by the sort_values() method. By default, sorting is done in ascending order, specify the parameter ascending=False to get descending order.

In [11]:
df_min_2015 = df.loc[(df.yearID == 2015) & (df.teamID == "MIN"),\
                     ['playerID', 'G', 'AB', 'H', 'HR', 'RBI']]\
            .sort_values('G', ascending=False)
df_min_2015.head(20)
Out[11]:
playerID G AB H HR RBI
100696 mauerjo01 158 592 157 10 66.0
100215 doziebr01 157 628 148 28 77.0
100915 plouftr01 152 573 140 22 86.0
100488 hunteto01 139 521 125 22 81.0
101164 suzukku01 131 433 104 5 50.0
100249 escobed01 127 409 107 12 58.0
101023 rosared01 122 453 121 13 50.0
100459 hicksaa01 97 352 90 11 33.0
101069 santada01 91 261 56 0 21.0
100994 robinsh01 83 180 45 0 16.0
101067 sanomi01 80 279 75 18 52.0
100816 nunezed02 72 188 53 4 20.0
99988 boyerbl01 68 0 0 0 0.0
100270 fienca01 62 0 0 0 0.0
100895 perkigl01 60 0 0 0 0.0
101240 vargake01 58 175 42 5 17.0
100221 duensbr01 55 1 0 0 0.0
100701 maytr01 48 3 0 0 0.0
100030 buxtoby01 46 129 27 2 6.0
100455 herrmch01 45 103 15 2 10.0

We may also do a multi-sort by passing in the list of columns we want sorted. This will sort in the order of the columns provided. For example,

In [12]:
df.loc[(df.yearID == 2015) & (df.teamID == "MIN"),\
        ['playerID', 'G', 'AB', 'H', 'HR', 'RBI']]\
        .sort_values(['G', 'HR'], ascending=False).tail()
Out[12]:
playerID G AB H HR RBI
101189 thielca01 6 0 0 0 0.0
99954 bernido01 4 5 1 0 2.0
100917 polanjo01 4 10 3 0 1.0
100564 keplema01 3 7 1 0 0.0
100729 meyeral01 2 0 0 0 0.0

DataFrame manipulation

Adding and dropping columns

In [13]:
df_min_2015.loc[:,'HtoAB'] = 0
df_min_2015.head()
Out[13]:
playerID G AB H HR RBI HtoAB
100696 mauerjo01 158 592 157 10 66.0 0
100215 doziebr01 157 628 148 28 77.0 0
100915 plouftr01 152 573 140 22 86.0 0
100488 hunteto01 139 521 125 22 81.0 0
101164 suzukku01 131 433 104 5 50.0 0
In [14]:
df_min_2015 = df_min_2015.drop('HtoAB', axis=1)
df_min_2015.head()
Out[14]:
playerID G AB H HR RBI
100696 mauerjo01 158 592 157 10 66.0
100215 doziebr01 157 628 148 28 77.0
100915 plouftr01 152 573 140 22 86.0
100488 hunteto01 139 521 125 22 81.0
101164 suzukku01 131 433 104 5 50.0
In [15]:
df_min_2015.H.head(10)
Out[15]:
100696    157
100215    148
100915    140
100488    125
101164    104
100249    107
101023    121
100459     90
101069     56
100994     45
Name: H, dtype: int64
In [16]:
df_min_2015.loc[:,'HtoAB'] = 0
df_min_2015.loc[:,'HtoAB'] = [v.H/v.AB 
                              if v.AB > 0 else 0 
                              for r, v in df_min_2015.iterrows()]
In [17]:
df_min_2015.head(10)
Out[17]:
playerID G AB H HR RBI HtoAB
100696 mauerjo01 158 592 157 10 66.0 0.265203
100215 doziebr01 157 628 148 28 77.0 0.235669
100915 plouftr01 152 573 140 22 86.0 0.244328
100488 hunteto01 139 521 125 22 81.0 0.239923
101164 suzukku01 131 433 104 5 50.0 0.240185
100249 escobed01 127 409 107 12 58.0 0.261614
101023 rosared01 122 453 121 13 50.0 0.267108
100459 hicksaa01 97 352 90 11 33.0 0.255682
101069 santada01 91 261 56 0 21.0 0.214559
100994 robinsh01 83 180 45 0 16.0 0.250000
In [18]:
df_min_2015[df_min_2015.G>80].sort_values('HtoAB', ascending=False)
Out[18]:
playerID G AB H HR RBI HtoAB
101023 rosared01 122 453 121 13 50.0 0.267108
100696 mauerjo01 158 592 157 10 66.0 0.265203
100249 escobed01 127 409 107 12 58.0 0.261614
100459 hicksaa01 97 352 90 11 33.0 0.255682
100994 robinsh01 83 180 45 0 16.0 0.250000
100915 plouftr01 152 573 140 22 86.0 0.244328
101164 suzukku01 131 433 104 5 50.0 0.240185
100488 hunteto01 139 521 125 22 81.0 0.239923
100215 doziebr01 157 628 148 28 77.0 0.235669
101069 santada01 91 261 56 0 21.0 0.214559
In [19]:
df_min_2015 = df_min_2015.reindex(columns=['playerID', 'HtoAB',  'AB', 'H', 'HR', 'RBI', 'G'])
df_min_2015.head()
Out[19]:
playerID HtoAB AB H HR RBI G
100696 mauerjo01 0.265203 592 157 10 66.0 158
100215 doziebr01 0.235669 628 148 28 77.0 157
100915 plouftr01 0.244328 573 140 22 86.0 152
100488 hunteto01 0.239923 521 125 22 81.0 139
101164 suzukku01 0.240185 433 104 5 50.0 131

Finally, we can return our DataFrame back to its original columns (and order) by reindexing again. Notice, also that we can effectively perform a drop() by doing this, though the syntax with reindex() is more verbose.

In [20]:
df_min_2015 = df_min_2015.reindex(columns=['playerID', 'G',  'AB', 'H', 'HR', 'RBI'])
df_min_2015.head()
Out[20]:
playerID G AB H HR RBI
100696 mauerjo01 158 592 157 10 66.0
100215 doziebr01 157 628 148 28 77.0
100915 plouftr01 152 573 140 22 86.0
100488 hunteto01 139 521 125 22 81.0
101164 suzukku01 131 433 104 5 50.0

Adding and dropping rows

Adding rows can be achieved using loc[] and setting the new index to a dictionary of values using the column labels as keys.

In [21]:
df_min_2015.loc[200000] = \
    {   'playerID': 'keith01',
        'RBI': '0',
        'G': '0',
        'H': '0',
        'HR': '0',
        'AB': '0' }
    
df_min_2015.tail()
Out[21]:
playerID G AB H HR RBI
100917 polanjo01 4 10 3 0 1
99954 bernido01 4 5 1 0 2
100564 keplema01 3 7 1 0 0
100729 meyeral01 2 0 0 0 0
200000 keith01 0 0 0 0 0

It is also the same with lists and tuples.

In [22]:
df_min_2015.loc[200000] = ('keith01', 1, 1, 1, 1, 1)
df_min_2015.loc[200001] = ['keith02', 1, 1, 1, 1, 1]

df_min_2015.tail()
Out[22]:
playerID G AB H HR RBI
99954 bernido01 4 5 1 0 2
100564 keplema01 3 7 1 0 0
100729 meyeral01 2 0 0 0 0
200000 keith01 1 1 1 1 1
200001 keith02 1 1 1 1 1

Note that we can drop a number of rows at a time by passing a list of the indices we'd like dropped.

In [23]:
df_min_2015 = df_min_2015.drop([200000, 200001], axis=0)
df_min_2015.tail()
Out[23]:
playerID G AB H HR RBI
101189 thielca01 6 0 0 0 0
100917 polanjo01 4 10 3 0 1
99954 bernido01 4 5 1 0 2
100564 keplema01 3 7 1 0 0
100729 meyeral01 2 0 0 0 0

Similar results can be achieved using append(). With append, you can append, Series, DataFrames and/or a list of these.

In [24]:
df_min_2015.append(
    pd.Series( 
     {'playerID': 'keith01', 
             'G': 0, 
             'AB': 0, 
             'H':0, 
             'HR': 0, 
             'RBI': 0}, name='200000')).tail()
Out[24]:
playerID G AB H HR RBI
100917 polanjo01 4 10 3 0 1
99954 bernido01 4 5 1 0 2
100564 keplema01 3 7 1 0 0
100729 meyeral01 2 0 0 0 0
200000 keith01 0 0 0 0 0
In [25]:
df_min_2015[:5].append(df_min_2015[-5:])
Out[25]:
playerID G AB H HR RBI
100696 mauerjo01 158 592 157 10 66
100215 doziebr01 157 628 148 28 77
100915 plouftr01 152 573 140 22 86
100488 hunteto01 139 521 125 22 81
101164 suzukku01 131 433 104 5 50
101189 thielca01 6 0 0 0 0
100917 polanjo01 4 10 3 0 1
99954 bernido01 4 5 1 0 2
100564 keplema01 3 7 1 0 0
100729 meyeral01 2 0 0 0 0
In [26]:
df_min_2015[:5].append([df_min_2015[10:12], df_min_2015[-5:]])
Out[26]:
playerID G AB H HR RBI
100696 mauerjo01 158 592 157 10 66
100215 doziebr01 157 628 148 28 77
100915 plouftr01 152 573 140 22 86
100488 hunteto01 139 521 125 22 81
101164 suzukku01 131 433 104 5 50
101067 sanomi01 80 279 75 18 52
100816 nunezed02 72 188 53 4 20
101189 thielca01 6 0 0 0 0
100917 polanjo01 4 10 3 0 1
99954 bernido01 4 5 1 0 2
100564 keplema01 3 7 1 0 0
100729 meyeral01 2 0 0 0 0

The same result can be achieved with pd.concat(), where the defaut axis is 0.

In [27]:
pd.concat([df_min_2015[:5], 
          df_min_2015[-5:]], axis=0)
Out[27]:
playerID G AB H HR RBI
100696 mauerjo01 158 592 157 10 66
100215 doziebr01 157 628 148 28 77
100915 plouftr01 152 573 140 22 86
100488 hunteto01 139 521 125 22 81
101164 suzukku01 131 433 104 5 50
101189 thielca01 6 0 0 0 0
100917 polanjo01 4 10 3 0 1
99954 bernido01 4 5 1 0 2
100564 keplema01 3 7 1 0 0
100729 meyeral01 2 0 0 0 0

But we can use concat() to make a column-wise concatenation using axis=1 (columns).

In [28]:
pd.concat([df_min_2015[:5], 
          df_min_2015[-5:]], axis=1)
Out[28]:
playerID G AB H HR RBI playerID G AB H HR RBI
99954 NaN NaN NaN NaN NaN NaN bernido01 4 5 1 0 2
100215 doziebr01 157 628 148 28 77 NaN NaN NaN NaN NaN NaN
100488 hunteto01 139 521 125 22 81 NaN NaN NaN NaN NaN NaN
100564 NaN NaN NaN NaN NaN NaN keplema01 3 7 1 0 0
100696 mauerjo01 158 592 157 10 66 NaN NaN NaN NaN NaN NaN
100729 NaN NaN NaN NaN NaN NaN meyeral01 2 0 0 0 0
100915 plouftr01 152 573 140 22 86 NaN NaN NaN NaN NaN NaN
100917 NaN NaN NaN NaN NaN NaN polanjo01 4 10 3 0 1
101164 suzukku01 131 433 104 5 50 NaN NaN NaN NaN NaN NaN
101189 NaN NaN NaN NaN NaN NaN thielca01 6 0 0 0 0

We can see that the indices are being considered in the concatenation and row indices are being joined. This behavior can be controlled via the join parameter, which we'll leave for the reader to explore.

One last thing we might want to do in an operation like this is to reset the index. To do so, we might start with ignoring the column index using the ignore_index=True so we can set it later to something more appropriate after the concatenation.

In [29]:
pd.concat([df_min_2015[:5], 
          df_min_2015[-5:]], axis=1, ignore_index=True)
Out[29]:
0 1 2 3 4 5 6 7 8 9 10 11
99954 NaN NaN NaN NaN NaN NaN bernido01 4 5 1 0 2
100215 doziebr01 157 628 148 28 77 NaN NaN NaN NaN NaN NaN
100488 hunteto01 139 521 125 22 81 NaN NaN NaN NaN NaN NaN
100564 NaN NaN NaN NaN NaN NaN keplema01 3 7 1 0 0
100696 mauerjo01 158 592 157 10 66 NaN NaN NaN NaN NaN NaN
100729 NaN NaN NaN NaN NaN NaN meyeral01 2 0 0 0 0
100915 plouftr01 152 573 140 22 86 NaN NaN NaN NaN NaN NaN
100917 NaN NaN NaN NaN NaN NaN polanjo01 4 10 3 0 1
101164 suzukku01 131 433 104 5 50 NaN NaN NaN NaN NaN NaN
101189 NaN NaN NaN NaN NaN NaN thielca01 6 0 0 0 0

Advanced indexing

Pandas provides the ability to build more complex indices allowing for highly flexible and natural data access.

We will cover the basics of through the MultiIndex object and will the the remaining exploration to the reader.

Let's get the players on the Washington Nationals who played 100 or more games in 2015 and 2016.

In [30]:
df_was = df[(df.yearID > 2014) & (df.teamID=='WAS') & (df.G > 99)]
In [31]:
df_was.head()
Out[31]:
playerID yearID stint teamID lgID G AB R H 2B ... RBI SB CS BB SO IBB HBP SH SF GIDP
100193 desmoia01 2015 1 WAS NL 156 583 69 136 27 ... 62.0 13.0 5.0 45 187.0 0.0 3.0 6.0 4.0 9.0
100250 escobyu01 2015 1 WAS NL 139 535 75 168 25 ... 56.0 2.0 2.0 45 70.0 0.0 8.0 1.0 2.0 24.0
100251 espinda01 2015 1 WAS NL 118 367 59 88 21 ... 37.0 5.0 2.0 33 106.0 5.0 6.0 3.0 3.0 6.0
100422 harpebr03 2015 1 WAS NL 153 521 118 172 38 ... 99.0 6.0 4.0 124 131.0 15.0 5.0 0.0 4.0 15.0
100950 ramoswi01 2015 1 WAS NL 128 475 41 109 16 ... 68.0 0.0 0.0 21 101.0 2.0 0.0 0.0 8.0 16.0

5 rows × 22 columns

One obvious problem if we were to access the data here by player and year, we have to build a much more involved query and even more so if we needed to ignore data.

We are going to create a hierarchical index or MultiIndex to solve this problem. We'll take take liberty to drop columns we don't need (teamID, ldID, stint) and reorganize the index hierarchically.

We will use MultiIndex using a tuple of the data we need and provide the index first by player, then by year. To do this we'll just grab all the player IDs and zip them with the year. This will look something like this:

In [32]:
tuple(
zip(
    df_was[['playerID','yearID']].sort_values(by='playerID')['playerID'],
    df_was[['playerID','yearID']].sort_values(by='playerID')['yearID']
)
)
Out[32]:
(('desmoia01', 2015),
 ('escobyu01', 2015),
 ('espinda01', 2015),
 ('espinda01', 2016),
 ('harpebr03', 2015),
 ('harpebr03', 2016),
 ('murphda08', 2016),
 ('ramoswi01', 2015),
 ('ramoswi01', 2016),
 ('rendoan01', 2016),
 ('reverbe01', 2016),
 ('robincl01', 2015),
 ('robincl01', 2016),
 ('taylomi02', 2015),
 ('werthja01', 2016),
 ('zimmery01', 2016))
In [33]:
# create an index to be used over the data we're interested in
idx = \
    pd.MultiIndex.from_tuples(
        tuple(
            zip(
                df_was[['playerID','yearID']].sort_values(by='playerID')['playerID'],
                df_was[['playerID','yearID']].sort_values(by='playerID')['yearID']))
    )
idx
Out[33]:
MultiIndex(levels=[['desmoia01', 'escobyu01', 'espinda01', 'harpebr03', 'murphda08', 'ramoswi01', 'rendoan01', 'reverbe01', 'robincl01', 'taylomi02', 'werthja01', 'zimmery01'], [2015, 2016]],
           labels=[[0, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11], [0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1]])

Notice now that we have two levels in our row axis (axis 0) and we will now use that index to build the hierachically indexed DataFrame.

In [34]:
# sorting the indices is critical for lining up the data in the tuples
df_was = df_was.sort_values(by=['playerID']).\
            set_index(idx).\
            drop(['playerID', 'yearID', 'teamID', 'lgID', 'stint'], axis=1)
df_was
Out[34]:
G AB R H 2B 3B HR RBI SB CS BB SO IBB HBP SH SF GIDP
desmoia01 2015 156 583 69 136 27 2 19 62.0 13.0 5.0 45 187.0 0.0 3.0 6.0 4.0 9.0
escobyu01 2015 139 535 75 168 25 1 9 56.0 2.0 2.0 45 70.0 0.0 8.0 1.0 2.0 24.0
espinda01 2015 118 367 59 88 21 1 13 37.0 5.0 2.0 33 106.0 5.0 6.0 3.0 3.0 6.0
2016 157 516 66 108 15 0 24 72.0 9.0 2.0 54 174.0 12.0 20.0 7.0 4.0 4.0
harpebr03 2015 153 521 118 172 38 1 42 99.0 6.0 4.0 124 131.0 15.0 5.0 0.0 4.0 15.0
2016 147 506 84 123 24 2 24 86.0 21.0 10.0 108 117.0 20.0 3.0 0.0 10.0 11.0
murphda08 2016 142 531 88 184 47 5 25 104.0 5.0 3.0 35 57.0 10.0 8.0 0.0 8.0 4.0
ramoswi01 2015 128 475 41 109 16 0 15 68.0 0.0 0.0 21 101.0 2.0 0.0 0.0 8.0 16.0
2016 131 482 58 148 25 0 22 80.0 0.0 0.0 35 79.0 2.0 2.0 0.0 4.0 17.0
rendoan01 2016 156 567 91 153 38 2 20 85.0 12.0 6.0 65 117.0 2.0 7.0 0.0 8.0 5.0
reverbe01 2016 103 350 44 76 9 7 2 24.0 14.0 5.0 18 34.0 0.0 3.0 2.0 2.0 12.0
robincl01 2015 126 309 44 84 15 1 10 34.0 0.0 0.0 37 52.0 4.0 5.0 0.0 1.0 6.0
2016 104 196 16 46 4 0 5 26.0 0.0 0.0 20 38.0 0.0 2.0 1.0 5.0 4.0
taylomi02 2015 138 472 49 108 15 2 14 63.0 16.0 3.0 35 158.0 9.0 1.0 1.0 2.0 5.0
werthja01 2016 143 525 84 128 28 0 21 69.0 5.0 1.0 71 139.0 0.0 4.0 0.0 6.0 17.0
zimmery01 2016 115 427 60 93 18 1 15 46.0 4.0 1.0 29 104.0 1.0 5.0 0.0 6.0 12.0
In [35]:
df_was.loc[('robincl01', ),['G', 'AB', 'H', 'SO']]
Out[35]:
G AB H SO
2015 126 309 84 52.0
2016 104 196 46 38.0
In [36]:
df_was.loc[('robincl01', 2016),['G', 'AB', 'H', 'SO']]
Out[36]:
G     104.0
AB    196.0
H      46.0
SO     38.0
Name: (robincl01, 2016), dtype: float64
In [41]:
df_mi.head()
Out[41]:
playerID yearID stint teamID lgID G AB R H 2B ... RBI SB CS BB SO IBB HBP SH SF GIDP
2007 AL BAL baezda01 bardebr01 2007 1 ARI NL 8 12 0 1 0 ... 0.0 0.0 0.0 0 3.0 0.0 0.0 0.0 0.0 0.0
bakopa01 bonifem01 2007 1 ARI NL 11 23 2 5 1 ... 2.0 0.0 1.0 4 3.0 0.0 0.0 0.0 0.0 0.0
bedarer01 byrneer01 2007 1 ARI NL 160 626 103 179 30 ... 83.0 50.0 7.0 57 98.0 5.0 10.0 1.0 4.0 12.0
bellro01 callaal01 2007 1 ARI NL 56 144 10 31 8 ... 7.0 1.0 1.0 9 14.0 0.0 1.0 1.0 1.0 8.0
birkiku01 choatra01 2007 1 ARI NL 2 0 0 0 0 ... 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0

5 rows × 22 columns

... on to Part IV: Wrapping Up.